
An Easy-To-Maintain Configuration File Architecture
A LabVIEW Architecture Solution for the Dynamic Environment
by David Thomson

8 LabVIEW Technical Resource • Volume 10, Number 3 • ltrpub.com

Excerpt from the LabVIEW™ Technical Resource

When developing new experiments and instruments at the
National Oceanic and Atmospheric Administration, it is
often the case that LabVIEW software must evolve with the
instrument. In the ideal case, software is thoroughly designed
before the first front panel is created. During instrument
development, it is often impossible to follow this ideal model.
As the instrument evolves, software is needed to control and
acquire data from an ever-changing assembly of components.
These components often include stand-alone instruments as
well as data acquisition devices, all of which need configuration
information associated with them. This configuration informa-
tion usually includes device numbers and addresses, channel
names and parameters, experiment descriptions, data file paths,
and so forth. A significant effort in developing such software
is often the creation of a mechanism for managing this
configuration information. We present here a configuration
file architecture that is tailored to this type of dynamically-
changing development situation. In creating this architecture,
we paid particular attention to ease-of-maintenance and
clarity of the code. Our architecture is included on this
issue’s LTR Resource CD.

There are a number of approaches one might take when faced
with the problem of saving configuration information to a file.
In the user interface, it is typical to group configuration
parameters into clusters of controls, with each cluster
corresponding to a device or instrument, and the virtual
controls often mimicking the appearance of similar real controls
on the hardware. In previous projects, we sometimes created
configuration files that used binary files to write these clusters
directly to disk. Although the file reading and writing is quite
simple initially for this method, the situation quickly becomes
difficult to manage when the experiment evolves and new
parameters must be added to the configuration. Each time a
new control or cluster is added to the main configuration
cluster, the previously used configuration files become
unreadable. By embedding version information in the cluster,
it is possible to create “smart” file readers that can read old
configuration file versions, but maintenance of such code is
time-consuming and prone to error.

Text-Based Configuration Files
When National Instruments introduced configuration file
VIs, a different approach became possible that had several
key benefits. With these VIs, you can create human-readable
configuration files. In addition, version compatibility became
much less of a problem. When new parameters are added to a

system, old configuration files can still be read, and default
values are supplied for the new parameters that are not found
in the file. If existing parameters are deleted, their continued
presence in the configuration files is of little concern, and they
are ignored when the desired parameters are read. This version-
independence is the key feature of the Configuration File VIs
that led us to adopt them for our type of continually changing
experiment development projects.

Although the text-based .ini files have these key advantages,
the typical implementation demonstrates several distinct
disadvantages. One disadvantage becomes apparent when
first looking at the example Read Configuration Settings File.vi,
supplied by National Instruments. To find this VI, select
Help >> Find Examples. Choose Browse According to Directory
Structure and select File >> config.llb. This VI demonstrates
how five parameters are read from a file. Because the parameters
are not in a cluster, they would require five connections on a
connector pane. In our experience, the number of parameters
required for a fairly complex experiment will quickly exceed the
capacity of the connector panes. The obvious solution to this is
to bundle the parameters into clusters. This is a simple problem
to remedy in the example. Our architecture will expand on this
to present a cluster structure that is applicable to many systems
and that has additional properties that allow it to work well
within our program.

A second disadvantage of the typical .ini file implementation is
that the Read and Write functions are generally contained in
two separate VIs, as is the case for the NI example. This means

We present here a configuration file

architecture that is tailored to the

dynamically-changing development situation.

In creating this architecture, we paid

particular attention to ease-of-maintenance

and clarity of the code.

9ltrpub.com • Volume 10, Number 3 • LabVIEW Technical Resource

Excerpt from the LabVIEW™ Technical Resource

that as parameters are added and changed, both of these VIs
must be updated and kept in sync with each other. Although
this may sound fairly trivial, experience has shown that this
process is a significant source of potential bugs. It is far too
easy to misspell a parameter name in one of the two VIs,
with the result often difficult to detect, let alone track down.

An Improved Configuration File Architecture
Figure 1 illustrates the front panel of the Configuration File
Example.vi, showing the input and output clusters and the
Read/Write control. Figure 2 illustrates the block diagram and
shows the Case Structure (with one case for each subcluster)
inside the For Loop, which cycles through all the subclusters.
(The VIs were developed in LabVIEW 6.1. Versions for 6.0
and 6.1 are available on this issue’s LTR Resource CD.

Before running the examples, set the configuration file
path name to an appropriate value for your system.)

The parameters to be read or written are defined in the
main cluster, which is a type definition and appears twice
on the front panel, once as an input and once as an output.
This cluster is made up of subclusters, each of which
represents one instrument or logical group of parameters.
Although more complex structures could be implemented,
this example supports two types of subclusters: flat clusters
containing any combination of simple data types, and
arrays of similar flat clusters. Although a single cluster of
parameters can get rather large for complex experiments,
it does provide a convenient way to wire the parameters
throughout the program.

Figure 1: Front Panel of Configuration File Example.vi

10 LabVIEW Technical Resource • Volume 10, Number 3 • ltrpub.com

Excerpt from the LabVIEW™ Technical Resource

If the main cluster becomes too unwieldy, it can be split into
several distinct clusters, each one using a separate implemen-
tation of the architecture shown here. These distinct parameter
clusters can be stored in the same .ini file, even though different
VIs at different places in the software read and write to them.

Another key feature of this architecture is evidenced by the
Read/Write control in the upper left corner of Figure 1. As this
control implies, this single VI handles both the reading and
the writing of the parameters from and to the .ini file. When
reading parameters, the input cluster can be used to provide
default values, and the resulting values read from the file are in
the output cluster. When writing parameters, the values to be
written are put in the input cluster, and the output cluster is a
redundant copy of those values. By combining the read and
write functions into one VI, the maintenance of this architec-
ture is reduced by at least a factor of two. When new parameters
are added, only one VI must change. This automatically
eliminates the potential for misspelling the parameter names
in the Read and Write functions, as described previously.

To simplify the programming of a single VI that both reads and
writes parameters, we created a version of the Configuration
File VIs that handles both these functions called Read_Write

Config Data.vi. This VI is polymorphic, as are the original
Configuration File VIs, to further simplify the process of
adding and altering parameters. This VI can be seen on the
diagram in Figure 2. It has the same inputs and outputs as
the Configuration File VIs, with the addition of the
Read/Write control and another control called Previous Found?.
The Previous Found? input is a mechanism for connecting
the found? outputs of the Configuration File VIs so that no
additional logic is needed on the main diagram to determine
whether all the requested parameters were found in the file.
If Previous Found? is left unwired, the found? output acts as it
does in the original Configuration File VIs, indicating whether
the requested parameter was found. If however, the Previous
Found? input is wired from the found? output of the previous
Read_Write Config Data.vi, it automatically acts as an
accumulating indicator for all the parameters that are wired
together in this way.

Program Structure
As shown in Figure 2, the structure of the example program is
a Case Structure inside a For Loop. The For Loop iterates once
for each subcluster. The Case Structure has one case for each
subcluster. The selection is wired from the for loop index and
converted to a Clusters type definition enumerated constant.

Figure 2: Configuration File Example.vi Block Diagram

Excerpt from the LabVIEW™ Technical Resource

11ltrpub.com • Volume 10, Number 3 • LabVIEW Technical Resource

The Clusters type definition provides several maintenance
advantages. This type definition must be edited manually to
contain one entry for each of the subclusters of the main
parameters cluster. Although this editing adds one more step
to the maintenance, it results in other savings and features.
By sizing the array of the Strings property of this type definition,
the number of For Loop iterations is calculated automatically,
eliminating the need to manually change a diagram constant.
Furthermore, the type definition automatically documents the
Case Structure by providing the subcluster names as the case
names. By not having a default case, the type definition provides
further insurance against maintenance errors by forcing the
Case Structure to be updated whenever a new subcluster is
defined. Finally, the Strings property of the type definition is
used to automatically supply the section names for the
configuration file.

Within each case, the relevant subcluster is unbundled by name,
then its parameters are unbundled by name, the reading/writing
is done, the values are rebundled, and finally the subcluster is
rebundled by name. Using the standard bundle (rather than
bundle by name) for the first bundling provides another
mechanism for preventing maintenance errors. When a new
parameter is added to a subcluster, this bundle will no longer
match the required structure of the second bundling, causing
a broken wire to appear, and forcing the diagram to be updated
to include the new parameter. This is desirable because
overlooking the new parameter update will result in an old
value being passed to the output cluster. Readability is still
maintained, however, by having the unbundle by name
on the left side of the case, so that each parameter is
automatically documented.

Besides flat clusters of simple parameters, it is often useful to
store arrays of clusters, such as might be used to configure
multiple similar channels of a device. The third case (Channels)
demonstrates how this can be accomplished. (You are
encouraged to review these VIs, which are included on this
issue’s LTR Resource CD.) An additional For Loop indexes
the array and the section name is automatically created from
combining the array name with the For Loop index. There is
one significant issue to keep in mind when using this type of
array of clusters: how to handle the default values of the array
elements. For each application, the programmer should decide
whether the number of array elements to be read should be

determined by the number of default values supplied, by the
number of array elements already in the file, by the larger of
these two numbers, or by some other criteria. In this example,
the number of array elements written to the file is stored as
another parameter in the file. When the array is read from the
file, at least as many elements will be read as currently exist in
the file. This handling of array elements should be carefully
considered when these types of configuration files are used.

In the example presented, the names for each parameter
are wired as constants on the diagram. It is fairly simple to
automate this aspect as well, to eliminate programming errors.
The program Configuration File Example Auto Names.vi
includes a subVI that parses the parameter names out of the
type definition cluster. These names are supplied in a 2D array,
which is then indexed by the main For Loop, and then by an
Index Array function, to supply the names to the Read_
Write Config Data.vi. Although this further automates
the maintenance of the program, it provides additional
complications when more complex data structures are used.
The parsing subVI was written to handle only flat clusters and
arrays of flat clusters. If another data structure is used (such as
a cluster of clusters), the parsing VI would have to be updated.

The architecture presented overcomes several difficulties and
limitations associated with other methods of maintaining
configuration files. We have found it to be useful in accelerating
the development of configuration file handling and in reducing
the number of bugs and errors generated as these configuration
file handling VIs are maintained.

LTR Publishing would like to thank Wilbur Shen of G Systems for
his valuable technical assistance with this article.

About the author:

David Thomson is a Research Scientist and Certified LabVIEW Developer at the
NOAA Aeronomy Lab, where he has been using LabVIEW for the last 10 years in the
development of airborne atmospheric chemistry instrumentation. For the past 4 years,
he’s been the principle of Original Code Consulting (www.originalcode.com), an
NI Alliance member.

LabVIEW Technical Resource is an independently
produced publication of LTR Publishing, Inc.

LabVIEW is a registered trademark of National Instruments Corporation.

© Copyright 2003 LTR Publishing, Inc. All rights reserved.

	dfsadf: You have just viewed a sample from the LabVIEW Technical Resource. To order this LTR issue with accompanying VIs, or a 1 year subscription to LTR, please click here.

