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Abstract


Typical combat robots (or BattleBots), though often impressive feats of rugged engineering, have usually been remotely controlled with hobby radio equipment, and have thus fallen outside the traditional definition of “robot”.  In order to attempt to derive a competitive advantage over these manually controlled combat robots, our group is developing a BattleBot with limited on-board intelligence.  By combining a gyroscope with the computational power of a small PC running a real-time OS, we have created a two-wheeled thwack-bot that is easy to control and can execute numerous semi-autonomous maneuvers.  We have also leveraged the data acquisition abilities of the system to additional advantage by monitoring and recording performance parameters.    By using the LabVIEW Development System and the LabVIEW Real-Time Module, the embedded software for this project was created quickly and efficiently and can be easily debugged and improved.  The built-in connectivity options with LabVIEW Real-Time also provide a powerful yet simple communication link between the operating robot and a laptop computer.

Introduction - The Thwack-Bot


Combat robotics from popular television shows such as BattleBots and Robot Wars is a relatively new sport in which contestants build custom remote-controlled robots designed to destroy or disable their opponents before they are destroyed.  The engineering challenge of building a better bot has ensnared numerous tinkerers, engineers, scientists, and hobbyists, resulting in continuously evolving and improving robotic contestants.  When our group (BotLabs) decided to enter the fray, we soon determined that our best chance at obtaining an advantage over the other bots was to add a small amount of on-board intelligence to our robot to allow it to perform in ways that other manually-controlled robots could not.


A fairly common battlebot design is that of the thwack-bot, which uses only two wheels, each with its own motor.  By counter-rotating the wheels, the bot can spin in place.  Most thwack-bots combine this ability with a long tail with a spike or other weapon at the end, resulting in a large amount of kinetic energy being quickly stored in the spinning tail and delivered to any opponent that attempts to engage the thwack-bot while it is spinning.  When it is not spinning, the thwack-bot can translate and turn by rotating the two wheels in the same direction (at different velocities in the case of turning.)  However, the great weakness of thwack-bots is that they cannot translate across the battlebox while they are rotating.  Thus they are often unable to deliver their fully-operating weapon to the opponent.


Our group is not the first to realize that it is theoretically possible to improve a thwack-bot in a way that allows it to translate while spinning.  If the thwack-bot had instantaneous knowledge of its rotational position as well as its desired direction of travel, then it could phase the speed of each wheel in such a way as to accelerate each wheel when it is traveling in the desired direction during the rotation of the bot, and decelerate each wheel when it is traveling in the opposite direction.  This type of operation is often referred to as a tornado drive.  Numerous builders have attempted to implement it using various techniques, but few have demonstrated successful operation of a tornado drive during a televised bout.

Embedded System Requirements


In order to implement a micro-processor-based tornado drive, the following requirements must be met.  The radios allowed in competition utilize a form of PWM encoding, with pulses sent out at a minimum frequency of 20 Hz.  The radio we chose to use emits pulses at 70 Hz.  These pulses must be monitored in real-time to interpret the operator’s commands.  The bot is designed to rotate at up to 4 Hz, so the gyroscope must be monitored at about 100 Hz to get adequate resolution over each rotation.  The radio pulses and gyroscope information are then combined to derive the PWM signals that drive the wheels.  These pulses should be generated at a similar 100 Hz rate in order to effectively control the bot's motion.  Thus the typical loop time for the system is 10ms.  Even at this low rate, a hard real-time implementation should help stabilize the system and provide optimal performance.


Additional physical requirements include the obvious need for extreme robustness.  Clearly, there can be no moving shock-sensitive parts in the computer, and hence no mechanical hard disk.  The entire mechanical design of the computer must be shock and vibration tolerant.  The physical environment also places limitations on the power requirements of the system.  A low-power system will generate less heat in the confined space, but more importantly, it will allow for longer run times on smaller and lighter batteries.  The physical size and weight of the computer system also are important considerations, as overall bot design is constrained by the weight class limits.


The software and OS also present requirements for successful development.  As mentioned above, the OS should be inherently robust and quick to reboot.  The software development tools should provide similar robustness.  Perhaps even more importantly, given our time constraints, the development tools must allow for fast code development and easy debugging.  Finally, these tools must also provide sophisticated features including those for algorithm implementation, TCP-IP communication, and multithreading.

The Solution


Several options were considered for the microprocessor/OS combination.  Small processors similar to Basic Stamps would provide a mechanically robust system with very low power requirements.  Other embedded computers and SBC were also considered.  Several factors led us in a different direction, however, and we decided to use LabVIEW Real-Time and PXI hardware from National Instruments (NI).  It could easily be argued that the basic requirements for a tornado drive implementation do not require a Pentium II-class processor and the advanced development environment that LabVIEW Real-Time provides.  However, LabVIEW software and PXI hardware bring numerous useful features to the project, including potential expansion into additional functionality that is far beyond what Basic Stamps and SBC's can typically provide.


To house our system, we chose a 4 slot PXI-1002 chassis from NI.  Although significantly larger than Basic Stamps and many SBC's, this is a relatively compact chassis by PXI or compact-PCI standards.  As it conforms to the PXI specification, this chassis has built-in forced-air cooling, a critical feature for operation in an enclosed battlebot which will be dissipating substantial heat.  For a controller, the NI PXI-8145RT was an obvious choice.  This controller is only 2 slots wide, uses a low-power laptop-grade PII 266 MHz processor, a built-in Ethernet port, and has built-in flash disks rather than mechanical hard disks.  For data acquisition and control, we installed a PXI-6602 8 channel counter-timer card and a PXI-6025E multi-function card.  We were able to use additional space inside the chassis for additional custom electronics and to house the radio receiver in a sheltered environment.  In addition, we switched the original ATX power supply with a smaller, lighter DC-input power supply from ICP Electronics.  By reducing the size and weight of the power supply and by utilizing the available space inside the chassis for additional electronics, we were able to minimize the adverse effects that the size of the PXI system might otherwise have imposed.
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Figure 1.  The PXI computer mounted inside Saurobot, with custom signal conditioning boards connected to the right-most two PXI cards.


Although LabVIEW Real-Time runs under a RTOS, programming for this environment is quick and straight-forward, especially for those whom are already familiar with the LabVIEW development system.  Code for the LabVIEW Real-Time system is written on a desktop PC, and much of the code can be tested on the PC itself.  When it is ready to be run on the PXI RT system, the code is downloaded to the PXI system.  Numerous powerful debugging features are available as well.  While the desktop (host) PC is still connected, the LabVIEW front panel can be viewed on the host while the code runs on the real-time controller.  Probes and tracing of the code can also be invoked on the host.  With the fast Ethernet connection, changes can be quickly made to the code and downloaded to the PXI system with little effort, allowing complex code to be developed, debugged, and optimized with great efficiency.  With LabVIEW Real-Time, a complex state-machine control program was written over the course of several weekends and evenings.


In addition to the ease-of-development and debugging features, other development features proved invaluable in the development of the Saurobot software.  Since LabVIEW is a graphical, data-flow based language, it is trivial to write software with multiple processes that can take advantage of multi-threaded OS's.  For the Saurobot, the program architecture we used includes four independent, parallel programs.  The Master Bot Controller program is the heart of the system.  It starts and stops the other programs and contains the main calculations and algorithms for driving the bot.  The Receiver program reads the radio signals and informs the Master Bot Controller of what the operator is trying to do.  The Master Bot Controller combines the information from the Receiver with its own readings of the gyroscope to calculate what the instantaneous speed of each motor should be.  It sends this information to the Speed Controller program, which converts these speeds to pulses to control the motors.  A fourth parallel program is used to do non-real-time tasks such as logging data to disk and sending data across a wireless network for monitoring on a laptop.
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Figure 2.  Saurobot completed and ready for combat.

Conclusions


Although our BattleBot has not yet seen combat, we have demonstrated the successful operation of the tornado drive.  In addition, we have developed a linear-translation mode of operation in which the bot utilizes the gyroscope to orient itself relative to the room.  In this mode, the bot always moves in the direction in which the operator points the joystick, rather than moving forward when the joystick is pushed up and backwards when it is pushed down.  By providing an absolute orientation to the room, our bot is significantly easier to drive than a typical remote-controlled robot. 


Although the size and complexity of a LabVIEW Real-Time/PXI system may well seem like overkill for the brains of a semi-autonomous BattleBot, we developed this system for three reasons.  First, we wanted to show how LabVIEW can be successfully used in yet another harsh-environment application.  Second, we anticipate that the robust tornado-drive we have implemented, along with the engineering data provided by the data acquisition system will provide our BattleBot with a very real advantage over more traditional bots.  Finally, this bot represents only the first stage in LabVIEW-powered combat robotics.  By basing our system on LabVIEW, we have the potential of the full power of the LabVIEW development system.

